Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Optimal Transmission Switching (OTS) problems minimize operational costs while treating both the transmission line energization statuses and generator setpoints as decision variables. The combination of nonlinearities from an AC power flow model and discrete variables associated with line statuses makes AC-OTS a computationally challenging Mixed-Integer Nonlinear Program (MINLP). To address these challenges, the DC power flow approximation is often used to obtain a DC-OTS formulation expressed as a Mixed-Integer Linear Program (MILP). However, this approximation often leads to suboptimal or infeasible switching decisions when evaluated with an AC power flow model. This paper proposes an enhanced DC-OTS formulation that leverages techniques for training machine learning models to optimize the DC power flow model's parameters. By optimally selecting parameter values that align flows in the DC power flow model with apparent power flows—incorporating both real and reactive components—from AC Optimal Power Flow (OPF) solutions, our method more accurately captures line congestion behavior. Integrating these optimized parameters into the DC-OTS formulation significantly improves the accuracy of switching decisions and reduces discrepancies between DC-OTS and AC-OTS solutions. We compare our optimized DC-OTS model against traditional OTS approaches, including DC-OTS, Linear Programming AC (LPAC)-OTS, and Quadratic Convex (QC)-OTS. Numeric results show that switching decisions from our model yield better performance when evaluated using an AC power flow model, with up to 44% cost reductions in some cases.more » « lessFree, publicly-accessible full text available November 1, 2026
-
This paper presents an algorithm for restoring AC power flow feasibility from solutions to simplified optimal power flow (OPF) problems, including convex relaxations, power flow approximations, and machine learning (ML) models. The proposed algorithm employs a state estimation-based post-processing technique in which voltage phasors, power injections, and line flows from solutions to relaxed, approximated, or ML-based OPF problems are treated similarly to noisy measurements in a state estimation algorithm. The algorithm leverages information from various quantities to obtain feasible voltage phasors and power injections that satisfy the AC power flow equations. Weight and bias parameters are computed offline using an adaptive stochastic gradient descent method. By automatically learning the trustworthiness of various outputs from simplified OPF problems, these parameters inform the online computations of the state estimation-based algorithm to both recover feasible solutions and characterize the performance of power flow approximations, relaxations, and ML models. Furthermore, the proposed algorithm can simultaneously utilize combined solutions from different relaxations, approximations, and ML models to enhance performance. Case studies demonstrate the effectiveness and scalability of the proposed algorithm, with solutions that are both AC power flow feasible and much closer to the true AC OPF solutions than alternative methods, often by several orders of magnitude in the squared two-norm loss function.more » « less
-
This paper presents an algorithm to optimize the parameters of power systems equivalents to enhance the accuracy of the DC power flow approximation in reduced networks. Based on a zonal division of the network, the algorithm produces a reduced power system equivalent that captures inter-zonal flows with aggregated buses and equivalent transmission lines. The algorithm refines coefficient and bias parameters for the DC power flow model of the reduced network, aiming to minimize discrepancies between inter-zonal flows in DC and AC power flow results. Using optimization methods like Broyden-Fletcher-Goldfarb-Shanno (BFGS), Limited-memory BFGS (L-BFGS), and Truncated Newton Conjugate-Gradient (TNC) in an offline training phase, these parameters boost the accuracy of online DC power flow computations. In contrast to existing network equivalencing methods, the proposed algorithm optimizes accuracy over a specified range of operation as opposed to only considering a single nominal point. Numerical tests demonstrate substantial accuracy improvements over traditional equivalencing and approximation methods.more » « less
-
This study introduces a mixed-integer linear programming (MILP) model, effectively co-optimizing patrolling, damage assessment, fault isolation, repair, and load re-energization processes. The model is designed to solve a vital operational conundrum: deciding between further network exploration to obtain more comprehensive data or addressing the repair of already identified faults. As information on the fault location and repair timelines becomes available, the model allows for dynamic adaptation of crew dispatch decisions. In addition, this study proposes a conservative power flow constraint set that considers two network loading scenarios within the final network configuration. This approach results in the determination of an upper and a lower bound for node voltage levels and an upper bound for power line flows. To underscore the practicality and scalability of the proposed model, we have demonstrated its application using IEEE 123-node and 8500-node test systems, where it delivered promising results.more » « less
An official website of the United States government
